Continuously Updated Indirect Inference in Heteroskedastic Spatial Models
نویسندگان
چکیده
منابع مشابه
sphet: Spatial Models with Heteroskedastic Innovations in R
This introduction to the R package sphet is a (slightly) modified version of Piras (2010), published in the Journal of Statistical Software. sphet is a package for estimating and testing spatial models with heteroskedastic innovations. We implement recent generalized moments estimators and semiparametric methods for the estimation of the coefficients variance-covariance matrix. This paper is a ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملIndirect inference in structural econometric models
This paper considers parametric inference in a wide range of structural econometric models. It illustrates how the indirect inference principle can be used in the inference of these models. Specifically, we show that an ordinary least squares (OLS) estimation can be used as an auxiliarymodel, which leads to amethod that is similar in spirit to a two-stage least squares (2SLS) estimator. Monte C...
متن کاملIndirect inference for spatio-temporal autoregression models
In this note we introduce a new inferential method for STAR (spatio-temporal autoregression) models. Due to the complexity of such models the maximum likelihood estimation is difficult to undertake when several nearest neighbours are included in the model, see Ali (1979). Moreover, only approximate likelihoods are available in practice because of the observations lying on the edges of the spati...
متن کاملEstimating Stable Factor Models By Indirect Inference
Financial returns exhibit common behavior described at best by factor models, but also fat tails, which may be captured by α-stable distributions. This paper concentrates on estimating factor models with multivariate α-stable distributed and independent factors and idiosyncratic noises under the assumption of time constant distribution (static factor models) or time-varying conditional distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3499006